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A NEW ALGORITHM FOR SUBOPTIMAIL STOCHASTIC CONTROL*

RENWICK E. CURRY**

Experimental Astronomy Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts

ABSTRACT

An apparently new stochastic control algorithm, herein called M-meas-
urement-optimal feedback control, is described for discrete time systems.
This scheme incorporates M future measurements into the control computations:
when M is zero, 1t reduces to the well-known open-loop-optimal feedback
control; when M is the actual number of measurements remsining in the prob-
lem, it becomes the truly optimal stochastic control. This new algorithm
may also be used to simplify computations when the plant is nonlinear, when
the controls are constrained, or when the cost is nonquadratic.  Simulation
results are presented which show the superiority of the new algorithm over
the open-loop-optimal feedback control.

I. INTRODUCTION

In most cases of practical interest it 1s exceedingly difficult to
obtain the solution to the optimal stochastic control problem (or combined
estimation and control problem) if the plant and/or measurement equations
are nonlinear, if the control is constrained, or if the cost is non-quadra-
tic, Different. suboptimal control algorithms have evolved as a compromise
between computational effort and a desire to incorporate realistic modeling
of the uncertainties involved. One widely used algorithm is the so-called
open-loop~optimal feedback control [l] , in which the control action is
computed under the assumption that no measurements are to be taken in the
future.

The algorithm presented here, called M-measurement-optimal feedback
control, assumes that M measurements are to be taken in the future. This
control is more akin to Feldbaum's "dual control" theory [2) than the open-
loop-optimal feedback control, since the control not only "directs" the
state, but can also "probe" or learn about the state. The same concept can
be used to treat other difficult-to-handle constraints such as nonlinear
state/measurement equations, constrained controls, and nonguadratic cost
criteria,

First the M-measurement-optimal feedback control is described and
discussed, and the special case of one future measurement is examined in
more detail. The paper concludes with an example and Monte Carlo simulation
results of the stochastic control of a linear plant with coarsely quantized
(nonlinear) measurements.

IT. M-MEASUREMENT-OPTIMAT, FEEDBACK CONTROL

Description of the Control Algorithm

The algorithm proceeds as follows: measurements and control actions
are recorded up to (say) time t,, and an estimate of the state vector (and,

* Supported by NASA Grant NsG 254-62. This work is based on a portion of
the author's Ph.D. Dissertation submitted to the Department of Aeronaut-
ics and Astronautics, Massachusetts Institute of Technology, Cambridge,
Mass,

*% Now with the School of Electrical Engineering, Cornell University, Ithaca,
New York, ‘
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perhaps, its conditional probability density function) is made. It is
temporarily assumed that M measurements are to be taken in the future (at
preassigned times), and the control sequence {uk’uk+l""} is computed to

minimize the cost to complete the process taking M measurements along the
way. This control sequence is the M-measurement-optimal control sequence.
Only s the first member of the sequence, is actually implemented; this

advances the time index, a new measurement is taken, a new estimate is

computed, and the process of computing a new M-measurement-optimal control
sequence is repeated,

Remarks

Limiting Forms of the Control The M-measurement-optimal feedback
control has two limiting forms: when M is zero, no future measurements are
included in the control computations and it becomes the well-known open-
loop-optimal feedback control [1] ; when M is the actual number of measure-
ments remaining in the problem, it becomes the truly optimal stochastic
control [2] .

Qualitative Description All available past and present measurements
are used in the control computations, hence the name feedback control.

The primary advantage of the M-measurement-optimal feedback control
over other suboptimal control algorithms is that one or more future obser-
vations are incorporated into the control computations. This allows for
the "probing" or "test signal" type of control action which is characteris-
tic of the truly optimal stochastic control {21 . The open-loop-optimal
feedback control cannot take this form since future measurements are
ignored.

Extensions The concept of incorporating M future measurements rather
than the actual number of measurements may be used to simplify computations
involving constrained controls, nonlinear plants, and nonquadratic cost
criteria as well., For example, if the actual controls are constrained at
all future times, it can be assumed for the purposes of control computation
that they are constrained only at M future times and unconstrained at all
other times. Similarly, 1t can be assumed that the plant is nonlinear only
at M future times but linear at all other times, or that the cost is non-
quadratic at M future times, but quadratic at all other times.

In all of these situations the suboptimal control approaches the
optimal control as M approaches the number of stages remaining in the
problem. Generally speaking, the computational effort will increase as M
increases, but the author knows of no analysils to show that the performance
will improve as M increases.

ITI. ONE-MEASUREMENT-OPTIMAT, FEEDBACK CONTROL

Problem Statement

Given:
a) The state equation

Xigq = fi(xi,ui,wi) i=0,1,...,N (1)

where Xy is the state wvector at time ti’ u, is the control vector

at time ti, and LA is the process noise at time ti.

: —2_



b) The measurement equation
7, = hi(xi,vi) i=1, 25...,N (2)
where vy is the observation noise at time ti.

¢) The cost criterion

N
- £l
d) The probability density functions p(x ), p(w ), p(v Y. It is
assumed that the vectors xo,{wi} , and {v‘g are independent.
e) For notational convenience let

Z

K = { zl,ze,...zk}

A R,

Open-Loop-Optimal Feedback Control

The cost function to be minimized by the open-loop control at time tk

is given by
N
ok =€ [szz L) + ) | 7 Uk-l] ()

This is minimized by the control sequence {uk,...,uﬁx subject to the state

constraint (1). The first member of this sequence, Uy s is the open—loop-
optimal feedback control at time tk

One-Measurement-Optimal Feedback Control

This portion treats a special case of M-measurement-optimal feedback
control, If only one fubure measurement is incorporated in the control

computation at time tk’ and if this measurement occurs at time tk+n’ then

the one-measurement cost function becomes

k+n— o
Tou, x 8 Lj(xj’uj)+ EEOL,IHn Zk’Uk+n-Za ZysUy 1 § (5)

In this equation, the optlmum open-loop cost function JOL k+n is similar to

() arter minimization, but it depends on the measurements {Z and

k’ “kin k
the controls Uk+n-l’ The first member of the control sequence {uk,...,uN}
that minimizes (5) is the one-measurement-optimal feedback control at time
T, .

k

The solution to (5) may still be difficult to find in practice. Even
if the explicit dependence of the open-loop cost function on the open-loop=-
optimal controls {uk+n""uN} can be removed, the solution of (5) still

invelves an n-stage two point boundary problem. If, however, the future
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measurement occurs at the "next" time, then (5) reduces to a parameter
optimization over W, i.e., the one-measurement cost function becomes

Tom, x =£{Lk(xk’uk)+ E[J?)L,Iﬁl‘ Zk’UA \Zk’Uk-l} (6)

. . 0
%n this equation JOL,k+l depends on the measurements Zk+l and the controls
k.

Linear Systems, Quadratic Cost, and Nonlinear Measurements

This section contains some specialized results when the state equation
is linear

= + 1 =
X4 G%Xi + Gy fowg 1=0,00.,N (7

and when the cost is quadratic

T 7 7
J =€{2 Xy Bgxg ooy Bavs F Xy Ay XN+1} (8)

Here the superscript T denotes the transpose, and the weighting matrices

Ai ’ Bi are positive definite. The measurements may still be nonlinear.

It has been shown [5, Appendix D ] that the optimum open-loop cost
function in this case is given by

o} _ T
Jor, k+1 = €041 Sy T | Bag 0

4-tz'[Ek+l(Fk+l- Sk+l)] + const, (9)

where tr is the trace of a matrix, and
5, = A+ [8,0 - Sp 608y 05 55, )7 65,18 (o)
Syr1 = A
LR
(11)

Fre1 = Ay

E = covariance of Xk+l conditioned on Z

K1 and U, .

k+1 k
A by-product in the derivation of (9) is the © en~loop-optimal feedback
control. At time t, it is given by [3, p.8on

)7t

G Sy & €V 20, ) (12)

This is the precise form of the truly optimal control when the measurements
are linear, the plant is linear, and the cost is quadratic,.

u-(Bk+GTS G

o]
oL, k k “k+l Tk

The equation for the one-measurement cost function with the future
measurement occuring at the next time, Eq.(6), beccmes



T T T
I, x _g{xk A e * 0 By Wt Xy S By

+ € {or [ By (- Sk+1i” %0y | e Ve (15)

+ const,

The value of that minimizes (13) is the one-measurement-optimal feedback
control at time t, for linear systems, quadratic cost, and nonlinear
measurements. This is computationally equivalent to solving for the first
control action in a two stage proceSS'[B, .67 ]. Nonlinear control action
results from the fact that the conditional covariance E +1 in (13) is a
function of 0, - (See [3] for some numerical results o¥ the two stage
control procesSs.) It has also been shown in [3, Appendix D:] that the

weighting matrix Fk+l- Sk+l is at least positive semidefinite. If it were

not, the control would minimize the cost by degrading, not improving, the
knowledge of the state.
IV, SIMULATTIONS

System Configuration

For definiteness, let the scalar state satisfy the equation

X =x; tug tw, i=0,...,N (1)

i+l
where x is the state, u is the scalar control, and w is Gaussian process

noise, The initial conditions also have a Gaussilan distribution. The cost
function is quadratic in nature.

N
J =€{§ A X12 * By ui2 * Ay X§+1} (15)

Observations are taken through a three level gquantizer shown in Fig. 1.
Observation noise is not included in this example.

Observation

A

Fig. 1. Three Level Quantizer for Observations



Estimation Procedure

Obtaining numerical solutions to the stochastic control problem
requires extensive use of the probability density function of the state
conditioned on past measurements and control actions. Here it is assumed
that the distribution just prior to a quantized measurement is Gaussian.
This algorithm has been extensively treated in [3] , and appears to be a
good approximation for linear systems and gquantized measurements. The
details of calculating moments conditioned on quantized measurements can
also be found in [3] .

Simulation Description

Both the open-loop-optimal feedback control and the one-measurement-
optimal feedback control have been simulated on the digital computer. The
latter algorithm assumes that the one future measurement occurs at the next
time instant. The control algorithms used the same realizations of the
initial conditions and process noise, although the state trajectories, in
general, were different. Each case was run 50 times and the ensemble aver-
ages were approximated by the numerical average of these 50 trials.

In all cases the weighting coefficients for the control effort {:B.}
are unity, and the process noise variance is constant, but varies %rom
case to case,

Numerical Results

The results of a seven stage stochastic process are described.
Quantitative results are displayed for s terminal control problem, and
the results of other simulations are discussed.

Terminal Control In the terminal control problem, all state weighting
coefficients are unity except the last one, » which is 100, This means,
roughly, that the RMS terminal error is ten times "more important" than the
other quantities in the cost function.

Tig., 2 shows the results when the measurements are taken through a
Jhree level quantizer: the ensemble mean square state and ensemble average
of the (approximate) conditional covariance of the state are plotted as a
function of time. For this case, the variance of the process noise is 0.2,
and the quantizer switch points are at + 1.

The most noticeable difference between the two control laws is that the
one-measurement control acts to reduce the conditional covariance of the
state estimate. Note that the ensemble average of the conditional covar-
iance is about half the average of the conditional covariance for the open-
loop control., The one-measurement control is able to do this by centering
the conditional distribution of the measurement near the quantizer switch
point. This is reflected in the curves for the mean square value of the
state, which stays in the neighborhood of 1.0 (the switch point)fbr the one-
measurement control, but gradually goes to zero for the open-loop control,
The control effort (not shown) for the one-measurement control is higher,
and it requires a large control action at the last application to bring the
state from the vicinity of the quantizer switch point to the origin.

The performance penalty of the open-loop-optimal feedback control over
the one-measurement-optimal feedback control is 17.1 percent for this case.
Other simulations revealed that the performance penalty ranged as high as
4L percent when observations were taken through a two level quantizer.

Other Simulations Cost functions other than the terminal control type
were simulated: the state deviations were weighted more heavily as time
progressed, or else the weightings were constant., The performance advantage
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of the one-measurement control was always less than 10 percent in these
cases, This arises from the fact that the one-measurement control tries to
move the state around to gain information, but these movements are restrict-
ed by the heavy weighting on the state deviations.

Thus a qualitative assessment, at least for linear systems and nonlinear
measurements, is that incorporating future measurements in the control
computations will yield the greatest return when the cost function is such
that the state and/or control is free to reduce uncertainty in the estimate.
In other situations, the open-loop control is quite attractive, especially
because of its computational simplicity.

V. CONCLUSTIONS

A new suboptimal stochastic control algorithm is presented which
incorporates one or more future measurements into the control computations.
The two limiting forms of the algorithm are the well-known open-loop-
optimal feedback control and the truly optimal stochastic control. This
concept can be extended to simplify the computations for constrained con-
trols, nonlinear plants, and nonguadratic cost criteria. A linear systenm
with quantized measurements was simuiated to compare the one-measurement-
optimal feedback control to the open-loop-optimal feedback control, The
greatest improvement over the open-loop algorithm occurs in those situations,
where the cost function gives the control and state some freedom to reduce
the uncertainty in the state estimate.
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